PROTOTIPO DE COMUNICACIÓN ENTRE TAXIS-POLICÍA PARA LA SEGURIDAD CIUDADANA

JHON JAIRO ZAMBRANO TERMAL

UNIVERSIDAD DE SAN BUENAVENTURA
FACULTAD DE INGENIERÍA
PROGRAMA DE INGENIERÍA ELECTRÓNICA
SANTIAGO DE CALI
2014
PROTOTIPO DE COMUNICACIÓN ENTRE Taxis-Policía PARA LA SEGURIDAD CIUDADANA

JHON JAIRO ZAMBRANO TERMAL

INFORME PROYECTO DE GRADO

DIRECTOR:
ING. GUILLERMO ADOLFO DAVID NÚÑEZ

UNIVERSIDAD DE SAN BUENAVENTURA
FACULTAD DE INGENIERÍA
PROGRAMA DE INGENIERÍA ELECTRÓNICA
SANTIAGO DE CALI
2014
NOTA DE ACEPTACIÓN

Ing. Guillermo Adolfo David Núñez
Director de Proyecto

Jurado 1

Jurado 2
Santiago de Cali, Octubre de 2014

AGRADECIMIENTOS

A mis padres por todo el apoyo moral y económico durante el curso de esta carrera universitaria y para llevar acabo el desarrollo de este proyecto.

A mi compañero Néstor Enrique Olaya Cardona Q.E.P.D, inicial gestor de la idea de este proyecto que nació de una conversación casual y que luego se convertiría en nuestra propuesta de proyecto de grado. Agradezco el aporte que dio a la construcción de este proyecto y la motivación para llevarlo a su realización.

Al Ing. Guillermo Adolfo David Núñez, director de este proyecto de grado, por su tiempo, orientación, seguimiento y supervisión a lo largo de este ciclo.

Gracias.
TABLA DE CONTENIDO

INTRODUCCIÓN .. 1

1 DESCRIPCIÓN DEL PROBLEMA DE INVESTIGACIÓN .. 2

1.1 Objetivos .. 3

1.1.1 Objetivo General .. 3

1.1.2 Objetivos Específicos ... 3

1.2 Justificación .. 4

2 MARCO DE REFERENCIA .. 5

2.1 Antecedentes ... 5

2.2 Marco Teórico .. 8

2.2.1 Sistema de Posicionamiento Global GPS .. 8

2.2.1.1 Historia ... 8

2.2.1.2 Estructura .. 10

2.2.1.3 Señales de los GPS ... 12

2.2.1.4 Formas avanzadas de GPS ... 14

2.2.1.5 Funcionamiento .. 15

2.2.1.6 Aplicaciones .. 17

2.2.2 Protocolos de Comunicación Del GPS ... 17

2.2.2.1 Protocolo NMEA 0138 .. 18

2.2.3 Mensajes NMEA ... 19

2.2.3.1 GGA – Datos fijos de GPS ... 19

2.2.3.2 GLL – Posición geográfica: latitud/longitud .. 21

2.2.3.3 GSA – DOP del GNSS y satélites activos ... 21

2.2.3.4 GSV – Satélites GSV en vista .. 22

2.2.3.5 RMC – Mínimos datos específicos de GNSS recomendados 23

2.2.3.6 VTG – Curso y Velocidad .. 23

2.2.4 Comunicación GSM .. 24

2.2.5 Desarrollo de Aplicaciones Móviles para Sistema Operativo Android 24

2.2.5.1 Creación del entorno gráfico de la aplicación ... 25

2.2.5.2 Programación en el editor de bloques ... 26

2.2.5.3 Simulación e Instalación de la aplicación ... 27
2.2.6 Servicio de Almacenamiento de Información ..27
3 DESARROLLO ..30
 3.1 Selección de los módulos del proyecto...31
 3.1.1 Modulo GPS L26 ...32
 3.1.2 Módulo GSM/GPRS M95 ...33
 3.1.3 Fuentes de Alimentación ...34
 3.1.4 Microcontrolador PIC24FJ64GA002 ...37
 3.1.5 Botón de Emergencia ...38
 3.2 Desarrollo Hardware del Sistema Embebido ..39
 3.3 Desarrollo Software del Sistema Embebido ..42
 3.3.1 Configuración y Procesamiento de datos del GPS ...45
 3.3.2 Configuración del GMS/GPRS Quectel M95 ...48
 3.3.3 Estructura del Mensaje de Texto ..48
 3.4 Aplicativo para Sistema Operativo Android ..49
 3.4.1 Interfaz Gráfica de aplicativo ..50
 3.4.2 Código de bloques ...51
4 PRUEBAS, RESULTADOS Y VALIDACIÓN ...55
 4.1 Interfaz con PC – Monitoreo de actividad del dispositivo ..55
 4.2 Registro de datos ..57
 4.3 Posicionamiento del GPS ...59
 4.4 Mediciones de Consumo ..60
5 CONCLUSIONES ...61
6 BIBLIOGRAFIA ..62
LISTADO DE FIGURAS

Figura 1. Orbitas Satelitales. 10
Figura 2. Formato de datos del sistema de navegación GPS. 14
Figura 3. Señales en un satélite. 14
Figura 4. Calculando la posición usando 3 satélites. 16
Figura 5. Creación del entorno gráfico 26
Figura 6. Ejemplo vista de ventana de edición de bloques 26
Figura 7. Ejemplo programación con App Inventor. 27
Figura 8. Apariencia de una tabla en Fusion Tables. 29
Figura 9. Esquema General representativo del sistema. 30
Figura 10. Diagrama de bloques sistema embebido 31
Figura 11. Tarjeta L26. 32
Figura 12. Antena para el módulo GPS L26. 33
Figura 13. Módulo GSM/GPRS M95. 33
Figura 14. Antena para el módulo GSM/GPRS M95. 34
Figura 15. Esquema típico voltaje de salida fijo LM2596 35
Figura 16. Esquema típico para salida de voltaje ajustable 36
Figura 17. Pinout PIC24FJ64GA002. 38
Figura 18. Botón de emergencia 38
Figura 19. Conexiones del microcontrolador 39
Figura 20. Esquema de reset y programación del microcontrolador 39
Figura 21. Conexiones mínimas para los módulos GPS y GSM 40
Figura 22. Aspecto físico de prototipo en Tarjeta de circuito impreso 41
Figura 23. Cara inferior de la tarjeta de circuito impreso. 41
Figura 24. Prototipo 42
Figura 25. Diagrama de flujo programa principal 43
Figura 26. Diagramas de flujo subrutinas del microcontrolador 44
Figura 27. Ejemplo de trama GLL 46
Figura 28. Máquina de estados para procesamiento de trama GLL 47
Figura 29. Esquema general aplicativo móvil 49
Figura 30. Eventos de la aplicación para Dispositivos Android 50
Figura 31. Interfaz gráfica aplicación móvil 51
Figura 32. Evento guardar 52
Figura 33. Código implementado para visualización de Coordenadas 53
Figura 34. Interfaz gráfica en PC 54
Figura 35. Diagrama de bloques de disposición de puertos UART 55
Figura 36. Prueba del sistema usando monitor de puerto serie 56
Figura 37. Registro de alertas en Google Fusion Tables 57
Figura 38. Vista de los registros en Dispositivo móvil 58
Figura 39. Visualización en mapa de las alertas usando Fusion Tables para PC 59
LISTA DE TABLAS

Tabla 1. Mensajes de salida de receptor GPS ..19
Tabla 2. Datos GGA ..20
Tabla 3. Datos GLL ..21
Tabla 4. Datos GSA ..21
Tabla 5. Datos GSV ..22
Tabla 6. Datos RMC ..23
Tabla 7. Datos VTG ..23
Tabla 8. Configuración por defecto GPS L26 ..45
Tabla 9. Mensajes de configuración GPS ..46
Tabla 10. Comandos AT usados para configurar el M9548
Tabla 11. Formato del mensaje de texto de la alerta48
Tabla 12. Consumo del prototipo ...60
Tabla 13. Tiempo de Funcionamiento del prototipo usando batería60
RESUMEN

El presente documento muestra el uso que puede darse a la tecnología en miras del mejoramiento de la seguridad ciudadana. Se trata de un sistema embebido que facilita la comunicación entre taxis y policía al momento que los primeros presencien o sean víctimas de hechos delictivos.

Se ha realizado investigación acerca de los hechos desafortunados en el gremio taxista, también las alternativas de comunicación que tienen con las autoridades. Adicionalmente, se ha investigado distintos proyectos relacionados a la problemática en cuestión y las tecnologías implementadas.

Cada uno de los elementos que conforman el sistema embebido ha sido seleccionado con criterios de disponibilidad local, bajo coste, facilidad en desarrollo y usabilidad. Criterios de bajo consumo en el sistema no son críticos por ser un equipo que portará el vehículo en su interior, sin embargo se destacan los consumos de cada uno de los componentes.

El sistema embebido desarrollado está centralizado en un microcontrolador que gestiona la comunicación entre un dispositivo de posicionamiento global, un dispositivo de comunicación móvil, y un mecanismo de alerta rápido y silencioso.

Con el advenimiento de teléfonos inteligentes (Smartphones) y servicios en la nube, se ha popularizado el desarrollo aplicaciones móviles con las cuales se puede interactuar con sistemas embebidos, este proyecto implementa dichas tendencias orientadas al almacenamiento de información y distribución de la misma en las redes sociales haciendo uso de una plataforma de desarrollo para uno de los sistemas operativos móviles de mayor crecimiento.
INTRODUCCIÓN

Con el incremento de inseguridad a nivel nacional, se pueden encontrar cifras alarmantes de hechos delictivos en las calles, adicionalmente el gremio de taxistas se convierten en víctimas de estos hechos.

En consecuencia, los prestadores de este tipo de transporte, se han visto en la necesidad de abstenerse a prestar servicio en ciertas zonas de las ciudades y cuando son víctimas de la delincuencia en el mejor de los casos al salir ilesos optan por tomar justicia por su cuenta, y en el caso desafortunado el conductor puede perder la vida en el hecho.

Desde hace varios años el gremio de los taxistas cuenta con el radio teléfono, sin embargo no todos los taxistas portan dicho equipo, además su uso está orientado a la prestación de servicios y comunicación con otros terminales de la central telefónica. Actualmente también existen aplicaciones para dispositivos móviles Android. En ambos casos, se debe manipular un equipo para dar un mensaje de alerta; este proyecto, enfoca su funcionalidad en alertar de forma rápida, sencilla, silenciosa sobre un hecho delictivo, proveyendo datos personales y de localización.

Para ello se ha estructurado este documento en 6 capítulos, que se describen como sigue:

En el capítulo 1, se ubica y contextualiza al lector en cuanto al problema de investigación, antecedentes objetivos, justificación del proyecto. En el capítulo 2, se presenta el estado del arte y la información que abarca la tecnología implementada de forma general y que permite entender el desarrollo del proyecto. Continuando en el capítulo 3, se puede encontrar la descripción de los dispositivos seleccionados, configuración y desarrollo de la solución planteada. Más adelante, en el capítulo 4, se podrán encontrar las pruebas realizadas al sistema desarrollado. Finalmente se indicarán las conclusiones obtenidas al término de este proyecto.
1 DESCRIPCIÓN DEL PROBLEMA DE INVESTIGACIÓN

Según la cifras del 2012, en un lapso de 24 horas en Cali se presentan aproximadamente de 15 a 20 robos a taxistas, los demás incidentes de robos y lesiones pasan inadvertidos. Hasta septiembre de 2012, habían sido asesinados 17 taxistas, 7 de ellos cuando intentaban atracarlos. (El Pais, 2012)

En septiembre del año 2012, entre 23 asociaciones de taxistas y el comandante de la policía se acordó reforzar la seguridad ante este aumento de violencia contra el gremio. Uno de los acuerdo logrados es la reactivación del radio de comunicación para establecer contacto las 24 horas entre la policía y las nueve empresas de taxis de la ciudad de Cali, el principal problema con este tipo de comunicación es que para reportar la situación de atraco los taxistas deben establecer comunicación hablada reportando toda la situación actual como nombre, ubicación, número de identificación interno del taxi, lo cual compromete la integridad del taxista y puede alarmar al victimario, por tal proceso para reportar un hurto en muchas ocasiones se opta por no denunciar el hecho.

Por testimonio de un taxista también se conoce que muchos de los ladrones suben al carro e inmediatamente despojan el radioteléfono lo cual imposibilita cualquier tipo de comunicación del taxista.

Debido a esta ola de inseguridad muchos taxistas optan por no prestar el servicio en algunos sectores populares de la ciudad de Cali.

Por otro lado, sumado a la problemática de los robos a taxistas se suman también las riñas callejeras, estas pueden presentarse en lugares donde no hay presencia policial, y sobre todo en horas de la noche y madrugada a la salida de establecimientos nocturnos.

Con respecto a las riñas callejeras, en el año 2010 la policía registró 22000 casos producto de alcohol e intolerancia, la cifras pueden ascender a más de 200 riñas en los días de fechas especiales. (Canal RCN, 2011)

Por lo anterior, ante estos hechos de inseguridad ¿De qué forma se puede efectuar una comunicación rápida y alternativa entre autoridades y taxistas para disminuir los índices de robo, homicidios y riñas callejeras en la ciudad de Cali?
1.1 Objetivos

1.1.1 Objetivo General

- Diseñar y construir un prototipo de comunicación entre taxis-policía para la seguridad ciudadana.

1.1.2 Objetivos Específicos

- Investigar y construir el estado del arte relacionado a sistemas de seguridad con comunicación entre taxis y policías.
- Definir los requerimientos de comunicación, visualización, ubicación y aviso necesarios para la construcción del sistema.
- Realizar un estudio de las diferentes tecnologías de comunicación y ubicación existentes en el mercado y seleccionar el idóneo según los requerimientos.
- Diseñar y construir un sistema embebido prototipo que supla los requerimientos planteados y según la tecnología seleccionada.
- Desarrollar una interfaz de usuario para la visualización de la información.
- Evaluar el funcionamiento del sistema desarrollado.
1.2 Justificación

Con este proyecto se logrará mejorar el servicio policial ante emergencias ya que las patrullas policiales alcanzarán a llegar de manera oportuna para prevenir actos delictivos y así disminuir los altos índices registrados. Además de la seguridad de los taxistas, también se aumentará la seguridad de la comunidad en general, ya que los taxis se encuentran recorriendo toda la ciudad, cuando estos presencien una anomalía, por ejemplo un atraco a un ciudadano, podrán informar de manera eficaz y segura a las autoridades, por ende las cifras de atracos en la ciudad se disminuirán.

Una causa importante de la situación criminal en la ciudad es que no hay suficientes policías para cubrirla en su totalidad, por lo tanto si se aprovecha que las personas taxistas son un gran número y que se encuentran recorriendo todos los sectores de la ciudad, muchos de ellos donde no hay presencia policial, se lograra dar un importante impacto social logrando mejorar la convivencia ciudadana.

También con la realización de este proyecto se conseguirá dar una mayor cobertura al recorrido de los taxistas, ya que por la inseguridad que pueden presentar, se abstienen de llegar a muchos lugares de la ciudad que se consideran peligrosos, este fenómeno ocasiona que los ciudadanos no logren tener un completo servicio de transporte.

Otro problema que se podrá solucionar con la implementación de este proyecto es evitar que los taxistas tomen justicia por cuenta propia, en muchas ocasiones que los taxistas presencian un hurto y al no tener una respuesta efectiva de las autoridades competentes, proceden a hacer autoridad por ellos mismos, reuniéndose entre muchos integrantes del gremio, golpeando sin corresponder al victimario.
2 MARCO DE REFERENCIA

2.1 Antecedentes

Realizando las investigaciones en primer lugar se tiene que en diciembre de 2011, fue presentado un artículo en la revista Soluciones de Postgrado EIA de la Escuela de Ingeniería de Antioquia el cual se titula Pre factibilidad del proyecto de implementación de un nuevo modelo operativo para el despacho de taxis. Caso Tax Individual S.A.

El proyecto describe la forma cómo fue implementado realizando la integración de tecnologías IVR (Interactive Voice Response), comunicación IP, GPS (Global Positioning System) y GPRS (Global Packet Radio System), para la automatización de la prestación de servicio de taxi.

Surgió del análisis de gestión de la Central de Servicios de Taxi de dicha empresa del Valle de Aburrá, en donde se encontró que había restricciones a la hora de prestar el servicio cuando era solicitado de manera telefónica o vía radioteléfono, de forma efectiva solo se prestaba el servicio al 65% de las solicitudes.

Con el desarrollo de esta investigación, se logró demostrar la factibilidad económica para desarrollar el proyecto, agilización en el tratamiento oportuno de cada solicitud de servicio de taxi realizada directamente a la empresa con un cubrimiento del 90%.(Arias Castrillón & Mora Palacio, 2011)

Adicionalmente se encuentra un artículo de la revista Sistemas y Telemática de la Universidad ICESI, artículo titulado Sistema de localización agresor-víctima en ambientes indoor y outdoor. Proyecto relacionado al sistema de monitoreo a personas con detención domiciliaria.

El problema de investigación en este proyecto se centra en la insuficiencia en seguridad de las personas que pueden ser víctimas de una agresión por parte del reo, por lo cual el sistema desarrollado garantiza a la posible víctima que su agresor se mantenga a una distancia prudente y así ofrecerle tranquilidad. El sistema es una plataforma de monitoreo que con la integración de tecnología es capaz de interactuar con dispositivos móviles comerciales.

En este proyecto hay tres tipos de dispositivos móviles: el de la víctima, el del agresor y el faro1, y dos servidores, un servidor web y un servidor que recibe la

1 Nombre dado por los autores del proyecto a un dispositivo desarrollado con la implementación de un sistema embebido sobre una tarjeta de desarrollo Beagleboard XM.
información de los faros y dispositivos móviles. El dispositivo del agresor cuenta con tecnología bluetooth, GPS y acceso a la red de datos GPRS, el dispositivo que porta la víctima es un celular con bluetooth, GPS y acceso a datos por GPRS, el faro cuenta con bluetooth y conexión Ethernet, y puede ser instalado en distintos lugares de afluencia pública.

Las pruebas realizadas a esta plataforma de monitoreo demostraron factibilidad en cuanto a cobertura del servicio, detección de los dispositivos y en general que toda la integración de tecnologías implementadas es adecuada, sin embargo como debilidad se presentan tiempos de hasta 30 segundos en la generación y recepción de mensajes de texto.(M. M. & otros Rodriguez, 2012)

Por otro lado, existe un proyecto como trabajo de fin de carrera de la Universidad de Carlos III de Madrid, el proyecto se titula Diseño e Implementación de una aplicación visual para el control de flotas basado en GPS, este documento se encuentra centrado en la interfaz gráfica de usuario en un PC de escritorio o equipo portátil para visualización del vehículo al que se le haya instalado un dispositivo GPS Garmin eTrex Vista HCx. La importancia en este documento se encuentra la implementación de un GPS que se consigue en el mercado para el cual se desarrolla la aplicación para computador usando el entorno de desarrollo Microsoft Visual Studio 2005 y lenguaje de programación C# y base de datos Microsoft Office Access 2007.(Cerrato Miranda, 2011)

Otro proyecto que se encontró en las consultas, se trata de una tesis de Ingeniería en Sistemas desarrollada en la Universidad Politécnica Salesiana, Quito (Ecuador). Se titula Diseño y construcción de un prototipo de control electrónico con GPS para bloquear y conocer la ubicación de los vehículos de la Cooperativa de Transporte “Taxis General Necochea” a través del servicio Sms que ofrecen las operadoras de Sma. El proyecto implementa un dispositivo en cada uno de los carros de la Cooperativa en cuestión con la intención de monitorear los vehículos y bloquear su movimiento en caso de ser robados. El dispositivo desarrollado trae consigo un GPS y el envío de datos hacia PC se realiza a través de Mensajes de texto con la implementación de un Modem GSM.(Sanchez Reinoso, 2012)

Fuera del nivel institucional, un proyecto a fin con la temática de esta propuesta se desarrolló en varios estados y ciudades de México. Se trata del programa “Taxi Seguro” el cual consiste en la instalación de un dispositivo GPS y una protección o mampara (Panel o tabique de vidrio, madera u otro material, generalmente móvil, que sirve para dividir o aislar un espacio.) entre el conductor y el pasajero con el objetivo de evitar robos o agresiones. La instalación del GPS tiene la finalidad de dar a conocer la ubicación del taxi en caso de algún incidente y facilitar de este modo la respuesta de las autoridades.(399 Project Development, 2013)

De igual forma, este sistema se está implementando en la ciudad de San Pablo de Manta (Ecuador) desde el año 2011 con el fin de disminuir los robos en taxis, la fuente indica que en el año 2011 fueron robados 3 vehículos de la Cooperativa
Mercado Central y sus conductores fueron abandonados en lugares apartados de la ciudad. (El Diario, 2012)

En el estado de Monagas (Venezuela), el presidente de la Asociación de Taxistas Autónomos exigió que se retome la instalación de GPS en los taxis ya que considera que es el mecanismo más seguro para bajar los índices de delincuencia y muerte a taxistas. El dispositivo es monitoreado en tiempo real por una compañía privada y además cuenta con comunicación al servicio de emergencia (Luzardo, 2013).

De forma comercial, se conoce acerca de la venta de distintos dispositivos GPS, sin embargo, ya están a la venta en páginas de compras online, diferentes dispositivos GPS a los cuales se les ha integrado otros tipo de servicios, caso puntual un dispositivo llamado Rastreador Gps Microsd Tracker Localizador GSM GPRS Portátil, el cual como indica el nombre funciona como localizador de personas, carros, motos, cuenta con opción de botón de emergencia (envía un mensaje de auxilio) y también marcando a la SIM card del dispositivo se puede escuchar lo que se habla a su alrededor, entre otras funciones alerta sobre exceso de velocidad, movimiento. Según la descripción encontrada es necesario realizar una llamada al equipo para que responda a través de un mensaje de texto con las coordenadas.

Adicionalmente se encontró que en Tailandia se realizó un dispositivo para la temperatura de una granja de pollos, donde, si la temperatura sobrepasaba algún valor establecido, el sistema revisa si el dispositivo encargado de regular la temperatura se encuentra funcionando bien, en caso afirmativo, era éste el encargado de normalizar la temperatura en el lugar, sino el sistema de monitoreo envía un aviso al dueño de la granja por medio de un mensaje de texto, esta acción se realiza gracias al uso de un módulo GPRS, en este caso se usó el módulo SIM300CZ el cual se programó por medio de comandos AT (Kittisut & Pornsuwancharoen, 2012).

En la ciudad de Guayaquil Ecuador se realizó un proyecto en el cual se manejaba un módulo de GPS por medio de una FPGA Cyclone II de Altera, para este proyecto se contó con un módulo de GPS de la marca SANAV, el cual se programó de manera serial y posteriormente se utilizó un aplicativo web para adecuar la información procesada en la altera proveniente del GPS, en Google Earth, finalmente se realizó pruebas en un vehículo efectuando un recorrido en la ciudad (Diego & Ing, 2013).
2.2 Marco Teórico

2.2.1 Sistema de Posicionamiento Global GPS

Es un Sistema Global de Navegación por Satélite (GNSS) que permite situar la posición actual de un objeto siempre y cuando haya una línea visual directa con cuatro o más satélites. (Cerrato Miranda, 2011)

Inicialmente estuvo restringido solo a operaciones militares y luego se facilitó el acceso a la población civil, pero con menor precisión que el usado por los departamentos militares de los Estados Unidos. (Huerta, Mangiaterra, & Noguera, 2005)

2.2.1.1 Historia

Antes de la aparición de los sistemas GNSS, ya se usaban sistemas de navegación radio-terrestres como LORAN (Long RAnge Navigation). Su funcionamiento se basaba en el envío de una señal desde diferentes emisores. Cuando un receptor captaba tres o más señales era capaz de determinar su posición.

Por otro lado, tras el lanzamiento del Sputnik por parte de la Unión Soviética, un equipo de científicos americanos descubrió que, gracias al efecto Doppler, se podía determinar la situación de dicho satélite debido a la distorsión que se producía en la señal que enviaba. Esto les llevó a pensar que, al igual que se podía ubicar el satélite conociendo la posición del observador en la Tierra, también se podría situar la posición del observador en la Tierra conociendo la posición del satélite.

El primer sistema GNSS que hizo su aparición fue TRANSIT en 1960, aunque hasta 1965 no hizo su entrada en servicio. Estaba formado por una constelación de seis satélites situados en seis planos. Con esta configuración se conseguía una cobertura mundial, pero no constante. Para poder obtener la posición del receptor, era necesario realizar un seguimiento del satélite durante 15 minutos. Además, sólo se podía acceder a los satélites una vez cada hora y media. Este sistema tenía un error de precisión en torno a los 250 m.

A partir de este sistema, se desarrollaron otros que se usaron para comprobar ciertas características concretas: Timation, desarrollado por la marina, introdujo un reloj en los satélites, 621B introducía ruido pseudo-aleatorio para resistir interferencias.

Con todos estos desarrollos en paralelo y en medio de la Guerra Fría, la Unión Soviética había desarrollado un sistema parecido al Transit llamado CICADA. Estados Unidos quería dejar atrás a los soviéticos por lo que, en 1973, en el Pentágono se propuso el DNSS (Defense Navigation Satellite System). Poco más tarde, se cambió el nombre a NAVSTAR (Navigation System Time and Ranging),
de ahí pasó a denominarse NAVSTAR-GPS y, por último, se redujo el nombre a GPS.

El sistema NAVSTAR se propuso para estar formado por una constelación de 24 satélites situados en seis planos de cuatro satélites cada uno, de forma que se obtuviera cobertura total. De esta forma, desde cualquier punto de la Tierra hay visión directa con un número de entre 4 y 12 satélites al mismo tiempo.

El primer satélite NAVSTAR se lanzó en 1978 y se planificó tener la constelación completa ocho años después. Sin embargo, esto no fue posible debido a varios retrasos (incluido el accidente del Challenger).

Entre 1978 y 1985 se pusieron en órbita un total de once satélites experimentales, lo que formaría lo que se conoce como Block-I. A partir de entonces, se han seguido lanzando satélites hasta completar la constelación y sustituyendo aquellos que quedaban inoperativos u obsoletos.

- Block IIF (2010): 1 satélite lanzado con éxito.

Además de éstos, hay programados otros 11 lanzamientos hasta completar el Block IIF, así como iniciar en 2014 el nuevo Block IIIA con el lanzamiento de nuevos satélites.

A pesar de ser un sistema militar, en 1983, tras derribar la Unión Soviética un avión coreano que se había introducido en su espacio aéreo por error, el presidente Ronald Reagan permitió el GPS para uso civil. Para eso se usaron dos códigos: el código C/A, civil, y el código P, militar, con mucha mejor precisión que el código civil.

Sin embargo, aunque se podía hacer uso civil del GPS, el ejército de Estados Unidos introdujo un error para evitar que fuera tan preciso. Es lo que se conoce como Disponibilidad Selectiva (Selective Availability). Este error intencionado fue eliminado bajo el mandato de Bill Clinton en el año 2000. De esta forma, y sin usar ningún tipo de ayuda de posicionamiento, se consigue un error de precisión de unos 15m.

Actualmente el error de precisión para un aparato civil puede estar por debajo de los 10 centímetros gracias a los sistemas de GPS Diferencial o DGPS (Differential GPS), así como a los Sistemas de Aumentación Basados en Satélite o SBAS
(Satellite Based Augmentation System), como son el WAAS en Estados Unidos, EGNOS en Europa, o MSAS en Japón. (Cerrato Miranda, 2011)

2.2.1.2 Estructura
El sistema GPS está constituido por tres segmentos: el segmento espacial, formado por los satélites; el segmento de control, formado por las estaciones terrestres; y el segmento de usuario, formado por los terminales receptores.

- **Segmento espacial**

Se conoce como segmento espacial a la constelación de satélites que, orbitando alrededor de la Tierra, emiten una señal con la cual los receptores son capaces de calcular su posición.

Los satélites que forman la constelación se reparten en seis órbitas sincronizadas y se desplazan a una altitud aproximada de unos 20.000 Km. Estas órbitas se orientan de la siguiente manera: una paralela al ecuador; otras dos formando 55° con el ecuador; y las tres restantes son polares y equidistantes entre sí. Esta distribución es la que permite que se reciba siempre la señal de cuatro o más satélites al mismo tiempo.

![Orbitas Satelitales](Orbitas%20Satelitales%2C%202007).

Aunque existen diferentes versiones de los satélites, cada uno de ellos tiene una vida media de entre 7,5 y 11 años, un peso de unos 900 kg, una envergadura de unos 5m con los paneles solares extendidos, y transmisores de RF de menos de 50 Vatios de potencia. Cada satélite da una vuelta a la Tierra cada 12 horas, que a nivel astronómico corresponden a 11 horas y 56 minutos.
Hasta ahora se han lanzado un total de 59 satélites con éxito en 6 fases (Blocks). 32 de ellos siguen operativos. De las dos primeras fases (Block I y block II) ya no queda ningún satélite operativo.

Los satélites funcionan de forma autónoma y con un mínimo mantenimiento. Los ajustes se realizan mediante mensajes NAV desde el segmento de control. Gracias a esta autonomía y a la redundancia de sus sistemas integrados se consigue continuidad en el servicio. A día de hoy, únicamente se producen cortes en el servicio que dan los satélites del Block II-A cuando reciben mensajes NAV desde el segmento de control.

- **Segmento de Control**

El segmento de control está formado por el conjunto de sistemas instalados en Tierra que permiten garantizar el servicio y la precisión del segmento espacial. Está formado por 12 estaciones, de las cuales una es la Estación de Control Principal o MCS (Master Control Station). Esta estación se encuentra en Colorado, en la Base Schriever de la Fuerza Aérea.

La situación de las 12 estaciones permite que cada satélite sea visible por, al menos, 2 estaciones al mismo tiempo. Se está planeando añadir otras 5 estaciones NGA a las actuales, de forma que cada satélite pueda ser monitorizado, como mínimo, por 3 estaciones. Con estos avances, las aplicaciones civiles podrán obtener entre un 15 y un 20% de mejora en la navegación en tiempo real, gracias a la mejor distribución de las efemérides de cada satélite entre los receptores GPS.

Cada estación se encarga de la monitorización de los satélites, de realizar tareas de telemetría, de enviar los mensajes NAV para el mantenimiento de los satélites, y de controlar los sistemas de tierra.

Tras el envío de nueva información, cada satélite sincroniza su reloj atómico y ajusta las efemérides de su órbita. El cálculo de la órbita se hace mediante un filtro de Kalman, que permite estimar la posición con una gran fiabilidad a pesar de factores externos que puedan influir, como ruido, climatología, etc.

Cuanto más tiempo pase entre las actualizaciones que hace el segmento de control, más imprecisa es la posición que se obtiene a partir de sus señales. Por este motivo,
se actualiza como mínimo una vez al día. En el momento de la actualización, la
precisión en la posición suele ser de alrededor de 1 m (Cerrato Miranda, 2011).

- **Segmento de Usuario**

Este segmento consiste de receptores diseñados para recibir, decodificar y procesar
las señales GPS.

Dentro de los receptores se encuentran los de uso civil con capacidad de recibir el
código C/A, y los militares con capacidad para recibir tanto el código C/A como el
código P.

Los receptores pueden estar aislados o integrados con otros sistemas circundantes;
estos pueden variar significativamente en diseño y función, dependiendo de sus
aplicaciones para la navegación, exactitud de posicionamiento, transferencias de
tiempo, vigilancia y referencia de actitudes de vuelo. (Solares Solares, 2002)

Los parámetros que pueden ser usados para comprobar la calidad de los receptores
son:

- La antena debe ser capaz de recibir la señal de los satélites con la suficiente
 potencia.
- El reloj debe ser lo suficientemente preciso como para mantener la
 sincronización temporal entre el receptor y los satélites.
- El número de canales debe ser tal que el receptor pueda sintonizar un
 número suficiente de señales
- La velocidad de procesado debe ser suficiente como para poder calcular la
 posición a partir de las señales sintonizadas.

En cuanto a las fuentes de error en el receptor, las principales son:

- Errores en el reloj.
- Mala ubicación de la antena y descentralización electromagnética.
- Manipulación incorrecta de los equipos.

2.2.1.3 **Señales de los GPS**

- **El Código C/A**

El código C/A consiste de un código con forma de ruido pseudoaleatorio de 1023
bits denominado PRN a un espaciamiento de reloj de 1.023MHz, el cual se repite
cada milisegundo.

La longitud corta de la secuencia de este código está diseñada para facilitar al
receptor de una rápida adquisición de la señal satelital que ayuda a la transición del
receptor al código P que es más largo. Un código PRN diferente es asignado a cada
satélite GPS, el cual es seleccionado de un grupo de códigos denominados “códigos dorados”.

Estos código son llamados así debido a su importancia ya que están diseñados para minimizar la probabilidad de un que un receptor pueda cometer el error de confundir un código de determinado satélite con el de otro. Este código es transmitido solamente en la señal de enlace L1 y no está encriptado. (Solares Solares, 2002)

- **El Código P(Y)**

Este código es una secuencia codificada de 10.23MHz que tiene 267 días de longitud. Cada satélite del sistema tiene asignado un segmento de siete días único que se reinicia cada transición de sábado a domingo a la medianoche, según el tiempo universal coordinado del sistema. El tiempo de sistema GPS es una continua escala de tiempo que se mantiene dentro de un microsegundo de diferencia con el tiempo universal coordinado con más o menos un cierto número de saltos de segundo.

El código P es normalmente encriptado dentro del código Y, para proteger el sistema de un engaño. Los satélites pueden transmitir tanto el P como el Y por lo mismo como uno es la encriptación del otro, éste en general es llamado código P(Y). La transmisión se realiza por cada satélite en L1 y L2. En L1 está colocado noventa grados desplazados de la fase portadora con el C/A. (Solares Solares, 2002)

- **Mensajes de Navegación NAV**

Un mensaje de navegación con una frecuencia de 50Hz es superpuesto en ambos códigos P(Y) y C/A. El mensaje de navegación incluye datos únicos de transmisión de cada satélite y datos comunes a todos. Los datos contienen el tiempo de transmisión del mensaje, el manejo de la trayectoria de transición del código C/A al código P(Y) en todo el mundo, correcciones de reloj, errores de efemérides, datos, datos del estado del satélite en cuanto a la transmisión, almanaque satelital, coeficientes del modelo de retardo ionosférico y coeficientes para calcular el tiempo universal coordinado.

El mensaje de navegación consiste de 25 estructuras de datos, una estructura consiste de 1500 bits, cada estructura es dividida en 5 subestructuras de 300 bits cada una. A una velocidad de 50Hz de transmisión. Toma 6 segundos recibir una subestructura, 30 segundos recibir una estructura de datos completa y 12.5 minutos recibir la totalidad de 25 estructuras de datos. Las subestructuras 1, 2 y 3 tienen el mismo formato de todas las 25 estructuras. Esto permite al receptor obtener datos críticos de cada satélite dentro de los 30 segundos de iniciada su operación. La estructura número uno contiene la corrección del reloj del satélite que transmite, también parámetros que describen el estatus de transmisión de la señal. Las estructuras 2 y 3 contienen datos de efemérides de órbita precisa usados para computar la localización de cada satélite por las ecuaciones de
posicionamiento. (Solares Solares, 2002), La Figura 2 muestra el formato de datos de navegación GPS:

![Formato de datos del sistema de navegación GPS](image)

Figura 2. Formato de datos del sistema de navegación GPS (Domínguez Sánchez, 1999).

En resumen, las señales de cada satélite quedan representadas en la Figura 3.

![Señales en un satélite](image)

2.2.1.4 Formas avanzadas de GPS

Nuevos métodos están en desarrollo continuo para hacer los sistemas GPS más precisos y confiables. En el presente, los más comunes son el GPS diferencial (DGPS), y el Sistema de Aumento en Áreas Amplias ("Wide Area Augmentation System" - WAAS). (Rey, 2012)
Un GPS diferencial consiste en dos receptores; uno estacionario y el otro hace medidas de posición, (se denomina “roving receiver”). El estacionario es la clave; almacena las medidas de todos los satélites en una referencia local. (Domínguez Sánchez, 1999)

Los receptores GPS usan señales de al menos 4 satélites para establecer una posición. Cada una de esas señales tiene un retraso debido al camino que ha de recorrer la señal hasta llegar al receptor. Debido a que el satélite está muy alejado de la tierra, las señales que llegan a dos receptores en la tierra separados algunos cientos de kilómetros tendrán prácticamente los mismos errores debido a su paso por la atmósfera. Esa es la clave, se tiene un receptor que mide los errores y manda la información a los roving receivers. De esta forma se pueden eliminar todos los errores del sistema, incluso el SA² que introduce el DoD³. (Domínguez Sánchez, 1999)

El receptor de referencia se sitúa en un punto que es perfectamente conocido y se mantiene en él. Esta estación de referencia recibe la misma señal GPS que los otros receptores pero en vez de trabajar las señales recibidas como los otros las ataca al revés. Utiliza su posición conocida para calcular el tiempo. Calcula el tiempo de propagación que deben tener las señales del GPS y lo compara con el que es actualmente. La diferencia es un factor de corrección de error. El receptor transmite entonces esta información a los otros receptores que usan este dato para corregir sus mediciones. (Domínguez Sánchez, 1999)

WAAS es un sistema de satélites secundario desarrollado por la Administración Federal de Aviación que no solo transmite señales de GPS, sino también monitorea y reporta el estado de los satélites de GPS, y transmite información de DGPS. El sistema solo es disponible sobre Norteamérica y el Océano Pacífico. (Rey, 2012)

La mayoría de los GPS disponibles hoy en día son capaces de precisión de 10 metros o menos. Uso de técnicas avanzadas, como las ya descritas pueden aumentar la precisión a un metro o menos. Aplicaciones especializadas que utilizan técnicas sofisticadas de manipulación de datos y equipos de primera clase pueden obtener precisiones medidas en centímetros. (Rey, 2012)

2.2.1.5 Funcionamiento

El GPS depende en que cada satélite en la constelación transmita su posición exacta y una señal de tiempo extremadamente precisa a los receptores en la tierra. Dada esta información, los receptores GPS pueden calcular su distancia al satélite,

2 Disponibilidad selectiva (Selective Availability).
3 Departamento de defensa de Estados Unidos (DoD).
y combinando esta información de cuatro satélites, el receptor puede calcular su posición exacta usando un proceso llamado trilateración. (Rey, 2012)

Trilateración - Si se conoce la distancia a un satélite, se sabe que su posición se encuentra sobre una esfera con centro en el satélite y con un radio igual a la distancia (Cuadro 3A).

Si se obtiene la misma información de un segundo satélite, puede estrechar su posible posición al área que tienen en común las dos esferas (región matizada, Cuadro 3B). Si se añade información de un tercer satélite, se puede precisar aún más la posición a los dos puntos donde las tres esferas cruzan (cuadrados pequeños, Cuadro 3C). Para determinar cuál de los dos puntos representa la posición actual, se puede tomar una cuarta medida, pero generalmente uno de los dos puntos obtenidos de tres satélites representa una posición absurda (por ejemplo en el espacio abierto) o con movimiento imposiblemente rápido, por lo cual se puede eliminar sin necesidad de la cuarta medida. Sin embargo, la cuarta medida aún es necesaria, lo cual se explica seguido.

El cuarto satélite - La distancia a los satélites se calcula midiendo el tiempo que toma a la señal a llegar del satélite al receptor (Distancia = velocidad X tiempo). Debido a que las señales de radio viajan a la velocidad de la luz (186.000 millas por segundo) los tiempos en tránsito de satélites a receptores son extremadamente pequeños y se necesitan dispositivos de cronometraje extremadamente precisos.
para medirlos con exactitud, por lo cual surge la necesidad de llevar relojes atómicos en los satélites. Sin embargo, los receptores no llevan relojes atómicos lo cual introduce errores en ese lado del sistema, y aún errores de cronometraje pequeños pueden resultar en grandes errores de posición, aquí es donde se necesita un cuarto satélite.

Si las cuatro medidas son exactas, la esfera definida por la cuarta medida debe cruzar las otras tres en un punto que representa la posición actual. Si existen errores, la cuarta esfera no cruzará a todas las otras. Debido a que el error del receptor es el mismo para las cuatro medidas, un ordenador en el receptor puede calcular una corrección que haga que las cuatro esferas crucen, y aplicar la corrección a las medidas para obtener la posición correcta. (Rey, 2012)

2.2.1.6 Aplicaciones
A continuación se listan algunas aplicaciones del GPS

- **Agricultura**: se usa en el transporte de ganado, para prevenir anomalías
- **Navegación en Tierra y Mar**: se usa para guiar sistemas de auto-piloto en embarcaciones, para saber la posición de un barco en altamar, entre otras.
- **Usos militares**: los departamentos militares lo usan para dirigir proyectiles y “bombas inteligentes” a sus destinos, para organizar el despliegue de sus tropas.
- **Mapas y Agrimensura**: permite la construcción de mapas y cartas más precisas.
- **Ciencias**: es muy común usarlo para seguir poblaciones de animales, para investigaciones de campo, entre otras.
- **Recreación**: es usado por personas amantes de los deportes extremos o naturistas que realizan caminatas a lugares selváticos.
- **Monitorización**: se usa frecuentemente para rastrear objetos perdidos, trayectorias de vehículos, personas, etc. (Rey, 2012)

2.2.2 Protocolos de Comunicación Del GPS

Ya que cada fabricante de GPS tiene sus propios formatos para guardar las mediciones GPS, es difícil combinar datos de diferentes receptores. Un problema similar ocurre al tratar de comunicar varios dispositivos de navegación, incluyendo el GPS. Para evitar estas limitaciones, varios grupos de investigación se han dado a la tarea de desarrollar estándares de usuarios. Algunos de los protocolos estándares son: RINEX, NGS-SP3, RTCM SC-104 y NMEA 0183. (B. P. Rodríguez, 2011)

El NMEA 0138 es el más común de todos y ampliamente utilizado en dispositivos GPS.

2.2.2.1 Protocolo NMEA 0138

El estándar NMEA 0183 fue desarrollado por la National Marine Electronics Association en 1983 para permitir la comunicación entre diferentes equipos electrónicos marítimos. Al ser propiedad de la NMEA, hay que pagar para poder hacer uso de él. (Cerrato Miranda, 2011)

La última versión desarrollada del estándar es la V4.00. Esta versión incluye nuevas sentencias y define conectividad con otros sistemas, como Galileo.

Por otro lado, para permitir bidireccionalidad entre los equipos, así como varios emisores y varios receptores, se definió el estándar NMEA 2000. Este estándar se basa en el CAN (Controller Area Network) que permite que no exista un equipo maestro que controle la red, sino que cada equipo por sí mismo puede compartir información en cualquier momento. (Cerrato Miranda, 2011)

Los estándares NMEA 0183 son cadenas de datos transmitidos de un hablante a un escucha, donde el hablante es un dispositivo que envía datos a otros dispositivos (como un receptor GPS) y el escucha es un dispositivo que recibe datos de otro dispositivo (como una computadora conectada a un receptor GPS). A continuación se enlistan los parámetros por defecto del protocolo de comunicación NMEA 0183:

- Tasa de bits: 4.800
- Bits de datos: 8
- Paridad: ninguna
- Bits de parada: 1

La cadena de datos del NMEA 0183 puede incluir información sobre la posición, fecha, profundidad del agua y otras variables.

Es importante notar que las tramas para sistemas GPS son sólo una parte del protocolo NMEA 0183; hay tramas para giroscopios, resonadores de eco, etc. Las características globales a considerar son las siguientes:

- Los datos son enviados en forma de tramas.
- Cada trama comienza con el signo de dinero “$” y termina con un retorno de carro/siguiente línea <CR><LF>.
- El signo “$” está seguido por un campo de 5 caracteres, generalmente en mayúsculas, que identifica al hablante (los primeros dos caracteres), tipo de dato y el formato de los campos sucesivos (los últimos tres caracteres).
El último campo de cualquier trama es una suma de control (checksum⁴), precedido por el caracter delimitador "*".

El máximo de caracteres de una oración es 82; esto es, que del signo "$" hasta la terminación <CR><LR> hay un máximo de 79 caracteres. (B. P. Rodriguez, 2011)

2.2.3 Mensajes NMEA

Las tramas NMEA que pueden enviar los receptores GPS y su descripción se presentan en la Tabla 1.

<table>
<thead>
<tr>
<th>Registro NMEA</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>GGA</td>
<td>Datos Fijos de GPS</td>
</tr>
<tr>
<td>GLL</td>
<td>Posición geográfica: Latitud/Longitud</td>
</tr>
<tr>
<td>GSA</td>
<td>GNSS, DOP y satélites activos</td>
</tr>
<tr>
<td>GSV</td>
<td>Satélites GNSS en vista</td>
</tr>
<tr>
<td>RMC</td>
<td>Mínimos datos específicos GNSS recomendados</td>
</tr>
<tr>
<td>VTG</td>
<td>Curso y velocidad</td>
</tr>
</tbody>
</table>

Fuente: Autor

A continuación, se muestra un ejemplo de cada una de las tramas NMEA y se especifica cada uno de sus campos.

2.2.3.1 GGA – Datos fijos de GPS

La Tabla 2, contiene los valores del siguiente ejemplo:

$GPGGA,203815.000,1919.5928,N,09910.9112,W,1,05,2.6,2251.8,M,-9.0,M,0.0,0000*48

⁴ Checksum: Una suma de verificación, (también llamada suma de chequeo o checksum), es una función que tiene como propósito principal detectar cambios accidentales en una secuencia de datos para proteger la integridad de estos, verificando que no haya discrepancias entre los valores obtenidos al hacer una comprobación inicial y otra final tras la transmisión.
<table>
<thead>
<tr>
<th>Nombre</th>
<th>Formato</th>
<th>Ejemplo</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID del mensaje</td>
<td>$GPGGA</td>
<td>$GPGGA</td>
<td>Cabecera de protocolo GGA</td>
</tr>
<tr>
<td>Posición UTC</td>
<td>hhmmss.sss</td>
<td>203815.000</td>
<td>Hora/segundo/fracción de la hora UTC.</td>
</tr>
<tr>
<td>Latitud</td>
<td>ddddmm.mmmm</td>
<td>1919.5928</td>
<td>Grados/minutos/fracción</td>
</tr>
<tr>
<td>Indicador N/S</td>
<td>X, N</td>
<td>N</td>
<td>N=norte y S=sur</td>
</tr>
<tr>
<td>Longitud</td>
<td>ddddmm.mmmm</td>
<td>09910.9112</td>
<td>Grados/minutos/fracción</td>
</tr>
<tr>
<td>Indicador E/O</td>
<td>X, W</td>
<td>W</td>
<td>E=este y W=oeste</td>
</tr>
<tr>
<td>Indicador de</td>
<td>X, 1</td>
<td>1</td>
<td>0= fijación no disponible o inválida, 1= modo SPS, 2= DGPS, 3= modo PPS, fijación válida</td>
</tr>
<tr>
<td>posición fija</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Satélites usados</td>
<td>xx</td>
<td>05</td>
<td>Rango 0-12</td>
</tr>
<tr>
<td>HDOP</td>
<td>xx.x</td>
<td>2.6</td>
<td>Dilución horizontal de la posición</td>
</tr>
<tr>
<td>Altitud MSL</td>
<td>xxxx.x</td>
<td>2251.8</td>
<td>Altitud medida desde el nivel de mar</td>
</tr>
<tr>
<td>Unidades</td>
<td>X, M</td>
<td>M</td>
<td>Unidades de altitud</td>
</tr>
<tr>
<td>Separación de geoide</td>
<td>xx.x</td>
<td>-9.0</td>
<td>Distancia entre el geoide y el elipsoide</td>
</tr>
<tr>
<td>Unidades</td>
<td>X, M</td>
<td>M</td>
<td>Unidades de separación del geoide</td>
</tr>
<tr>
<td>Edad de la</td>
<td>xx.x</td>
<td>0.0</td>
<td>Dada en segundos, es nula cuando el DGPS no está en uso</td>
</tr>
<tr>
<td>corrección diferencial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID de la estación de la</td>
<td>xxxx</td>
<td>0000</td>
<td></td>
</tr>
<tr>
<td>Referencia diferencial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Checksum</td>
<td>*xx</td>
<td>*48</td>
<td></td>
</tr>
<tr>
<td><CR><LF></td>
<td><CR><LF></td>
<td><CR><LF></td>
<td>Fin del mensaje</td>
</tr>
</tbody>
</table>

Fuente: Tomado de (B. P. Rodriguez, 2011).
2.2.3.2 GLL – Posición geográfica: latitud/longitude
La Tabla 3, contiene los valores del siguiente ejemplo:

$GPGLL,1919.5928,N,09910.9112,W,203833.000,A, A*4E

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Formato</th>
<th>Ejemplo</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID del mensaje</td>
<td>$GPGLL</td>
<td>$GPGLL</td>
<td>Cabecera de protocolo GLL</td>
</tr>
<tr>
<td>Latitud</td>
<td>ddmm.mm</td>
<td>1919.5928</td>
<td>Grados/minutos/fracción</td>
</tr>
<tr>
<td>Indicador N/S</td>
<td>X</td>
<td>N</td>
<td>N=norte y S=sur</td>
</tr>
<tr>
<td>Longitud</td>
<td>dddmm.m</td>
<td>09910.9112</td>
<td>Grados/minutos/fracción</td>
</tr>
<tr>
<td>Indicador E/O</td>
<td>X</td>
<td>W</td>
<td>E=este y W=oeste</td>
</tr>
<tr>
<td>Posición UTC</td>
<td>hhhmmss</td>
<td>203833.000</td>
<td>Hora/minuto/segundo/fracción de la hora UTC.</td>
</tr>
<tr>
<td>Status</td>
<td>X</td>
<td>A</td>
<td>A= datos válidos</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>V= datos no válidos</td>
</tr>
<tr>
<td>Checksum</td>
<td>*xx</td>
<td>*4E</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 3. Datos GLL

Fuente: Tomado de (B. P. Rodriguez, 2011)

2.2.3.3 GSA – DOP del GNSS y satélites activos
La Tabla 4, contiene los valores del siguiente ejemplo:

$GPGSA,A,3,18,31,14,22, , , , , , , ,5.8,2.7,5.2*33

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Formato</th>
<th>Ejemplo</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID del mensaje</td>
<td>$GPGSA</td>
<td>$GPGSA</td>
<td>Cabecera de protocolo GSA</td>
</tr>
<tr>
<td>Modo 1</td>
<td>X</td>
<td>A</td>
<td>M: modo manual, forzado a operar en 2D o en 3D</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A: automático, cambia automáticamente entre 2D/3D</td>
</tr>
<tr>
<td>Modo 2</td>
<td>x</td>
<td>3</td>
<td>1: fijación no disponible</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2: 2D</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3: 3D</td>
</tr>
<tr>
<td>Satélite usado</td>
<td>xx</td>
<td>18</td>
<td>Satélite usado en el canal 1</td>
</tr>
<tr>
<td>Satélite usado</td>
<td>xx</td>
<td>31</td>
<td>Satélite usado en el canal 2</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>Satélite usado</td>
<td>xx</td>
<td>-</td>
<td>Satélite usado en el canal 12</td>
</tr>
<tr>
<td>PDOP</td>
<td>x.x</td>
<td>5.8</td>
<td>DOP de precisión</td>
</tr>
<tr>
<td>HDOP</td>
<td>x.x</td>
<td>2.7</td>
<td>DOP horizontal</td>
</tr>
<tr>
<td>VDOP</td>
<td>x.x</td>
<td>5.2</td>
<td>DOP vertical</td>
</tr>
<tr>
<td>Checksum</td>
<td>*xx</td>
<td>*33</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 4. Datos GSA

Fuente: Tomado de (B. P. Rodriguez, 2011)
2.2.3.4 GSV – Satélites GSV en vista

La Tabla 5, contiene los valores del siguiente ejemplo

\[$GPGSV,3,1,12,31,72,206,30,22,55,068,27,14,41,012,29,18,30,101,41*74 \]

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Formato</th>
<th>Ejemplo</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID del mensaje</td>
<td>$GPGSV</td>
<td>$GPGSV</td>
<td>Cabecera de protocolo GSV</td>
</tr>
<tr>
<td>Número de mensajes</td>
<td>x</td>
<td>3</td>
<td>Rango de 1 - 3</td>
</tr>
<tr>
<td>Número de mensaje</td>
<td>x</td>
<td>1</td>
<td>Rango de 1 - número de mensajes</td>
</tr>
<tr>
<td>Satélite en vista</td>
<td>xx</td>
<td>12</td>
<td>Numero de satélites en vista</td>
</tr>
<tr>
<td>ID del satélite</td>
<td>xx</td>
<td>31</td>
<td>Canal 1 (rango de 1-12)</td>
</tr>
<tr>
<td>Elevación</td>
<td>xx</td>
<td>72</td>
<td>Valor de elevación para el canal 1 dado en grados (máximo 90º)</td>
</tr>
<tr>
<td>Azimut</td>
<td>xxx</td>
<td>206</td>
<td>Valor acimutual para el canal 1 dado en grados (máximo 359º)</td>
</tr>
<tr>
<td>SNR(C/No)</td>
<td>xx</td>
<td>30</td>
<td>Signal-to-Noise Ratio, rango de 1-99, dado en dBHz. Nulo cuando no se encuentra rastreando</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>ID de satélite</td>
<td>xx</td>
<td>18</td>
<td>Canal 12 (rango de 1-12)</td>
</tr>
<tr>
<td>Elevación</td>
<td>xx</td>
<td>30</td>
<td>Valor de elevación para el canal 12 dado en grados (máximo 90º)</td>
</tr>
<tr>
<td>Azimut</td>
<td>xxx</td>
<td>101</td>
<td>Valor acimutual para el canal 12 dado en grados (máximo 359º)</td>
</tr>
<tr>
<td>SNR(C/No)</td>
<td>xx</td>
<td>41</td>
<td>Signal-to-Noise Ratio, rango de 1-99, dado en dBHz. Nulo cuando no se encuentra rastreando</td>
</tr>
<tr>
<td>Checksum</td>
<td>*xx</td>
<td>*74</td>
<td></td>
</tr>
<tr>
<td><CR><LF></td>
<td><CR><LF></td>
<td><CR><LF></td>
<td>Fin del mensaje</td>
</tr>
</tbody>
</table>

Fuente: Tomado de (B. P. Rodríguez, 2011)
2.2.3.5 RMC – Mínimos datos específicos de GNSS recomendados

La Tabla 6, contiene los valores del siguiente ejemplo

$GPRMC,203824.000,A,1919.5928,N,09910.9112,W,0.00,89.14,150311,,,A*4C

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Formato</th>
<th>Ejemplo</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID del mensaje</td>
<td>$GPRMC</td>
<td>$GPRMC</td>
<td>Cabecera de protocolo RMC</td>
</tr>
<tr>
<td>Posición UTC</td>
<td>hhmsss.sss</td>
<td>203824.000</td>
<td>Hora/minuto/segundo/fracción de la hora UTC</td>
</tr>
<tr>
<td>Status</td>
<td>X</td>
<td>A</td>
<td>A= datos válidos</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>V= datos no válidos</td>
</tr>
<tr>
<td>Latitud</td>
<td>ddmm.mmmm</td>
<td>1919.5928</td>
<td>Grados/minutos/fracción</td>
</tr>
<tr>
<td>Longitud</td>
<td>dddmm.mmmm</td>
<td>09910.9112</td>
<td>Grados/minutos/fracción</td>
</tr>
<tr>
<td>Indicador E/O</td>
<td>X</td>
<td>W</td>
<td>E=este y W= oeste</td>
</tr>
<tr>
<td>Velocidad</td>
<td>x.xx</td>
<td>0.00</td>
<td>Velocidad del dispositivo dada en nudos</td>
</tr>
<tr>
<td>Curso</td>
<td>xxx.xx</td>
<td>89.14</td>
<td>Curso del dispositivo dado en grados</td>
</tr>
<tr>
<td>Fecha</td>
<td>dddmmyy</td>
<td>150311</td>
<td>Día/mes/año</td>
</tr>
<tr>
<td>Variación magnética</td>
<td>X</td>
<td>-</td>
<td>E=este y W= oeste</td>
</tr>
<tr>
<td>Checksum</td>
<td>*xx</td>
<td>*4C</td>
<td>Fin del mensaje</td>
</tr>
</tbody>
</table>

Fuente: Tomado de (B. P. Rodriguez, 2011)

2.2.3.6 VTG – Curso y Velocidad

La Tabla 7, contiene los valores del siguiente ejemplo

$GPVTG,89.14,T,,M,0.00,N,0.0,K,A*39

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Formato</th>
<th>Ejemplo</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID del mensaje</td>
<td>$GPVTG</td>
<td>$GPVTG</td>
<td>Cabecera de protocolo VTG</td>
</tr>
<tr>
<td>Curso</td>
<td>xxx.xx</td>
<td>89.14</td>
<td>Curso del dispositivo dado en grados</td>
</tr>
<tr>
<td>Referencia</td>
<td>X</td>
<td>T</td>
<td>T=true</td>
</tr>
<tr>
<td>Curso</td>
<td>xxx.xx</td>
<td>-</td>
<td>Curso del dispositivo dado en grados</td>
</tr>
<tr>
<td>Referencia</td>
<td>X</td>
<td>M</td>
<td>Magnética</td>
</tr>
<tr>
<td>Velocidad</td>
<td>x.xx</td>
<td>0.00</td>
<td>Velocidad horizontal del dispositivo</td>
</tr>
<tr>
<td>Unidades</td>
<td>X</td>
<td>N</td>
<td>Unidades de velocidad horizontal, N=nudos</td>
</tr>
<tr>
<td>Velocidad</td>
<td>x.xx</td>
<td>0.0</td>
<td>Velocidad horizontal del dispositivo</td>
</tr>
<tr>
<td>Unidades</td>
<td>X</td>
<td>K</td>
<td>Unidades de velocidad horizontal, K=Kilómetros/hora</td>
</tr>
<tr>
<td>Checksum</td>
<td>*xx</td>
<td>*39</td>
<td>Fin del mensaje</td>
</tr>
</tbody>
</table>

Fuente: Tomado de (B. P. Rodriguez, 2011)
2.2.4 Comunicación GSM

El GSM, o Sistema Global para las telecomunicaciones móviles es un sistema estándar completamente definido, usado para la comunicación entre teléfonos móviles basada en la tecnología digital. Lo que permite, al ser digital, que cualquier usuario pueda conectarse a través del teléfono a su PC personal, permitiéndole interactuar por e-mail, fax, acceder a Internet, y un acceso seguro a redes LAN o Intranet. También existe la posibilidad de envío de texto corto entre terminales (SMS). Es considerado un estándar de segunda generación (2G) debido a su velocidad y características (Ingeniatic, 2011).

Toda su arquitectura está basada en capas: teléfono móvil – BS (Base Station) - BSC (Base Station Controller). BS es la capa que forman todo el entramado de antenas repartidas en un territorio, este entramado está repartido de forma celular, donde cada antena ocupa un espacio geográfico, haciendo así que el sistema sea capaz de soportar a todos los usuarios. Por otro lado es el BSC el que se encarga de coordinar (controlar) todo el entramado de BS (las antenas), para que, si el terminal (móvil) se encuentra en movimiento, sea posible realizar el traspaso entre celdas (Handover). (Ingeniatic, 2011)

Las funciones del NSS (Network Switching Subsystem) son:

- Enrutar las transmisiones al BSC en que se encuentre el usuario llamado.
- Dar interconexión con las redes de otros operadores.
- Dar conexión con el subsistema de identificación de abonado y las bases de dato del operador, que permisos al usuario para poder usar servicios de la red según su tipo de abono y estado de pagos.

Por último existe otros subsistemas como son el MSC (se encarga de canalizar las llamadas a través del BSC y BS), HLR (Home Location Register) y VLR (Visitors Location Register) (bases de datos que se encargan de identificar al usuario llamante y llamado, sus tarifas, servicios que puede usar, etc.) y la tarjeta SIM, tarjeta inteligente desmontable que contiene toda la información del usuario, su contrato, los parámetros de la red y el directorio telefónico, lo que permite un cambio de teléfono (terminal) fácil. Y también el cambio de compañía manteniendo el terminal simplemente con una nueva SIM. (Ingeniatic, 2011)

2.2.5 Desarrollo de Aplicaciones Móviles para Sistema Operativo Android

A diferencia de otros sistemas operativos móviles como IOS o Windows Phone, Android se desarrolla de forma abierta (Open Source) y se puede acceder al código fuente.

Para el desarrollo de aplicaciones para sistema operativo Android existe la posibilidad usar el lenguaje nativo del sistema operativo el cual se basa en Lenguaje
Java, desde la web oficial Android se encuentra en disponible el SDK (Software Development Kit) para iniciar el desarrollo con entornos de trabajo como Eclipse y Netbeans.

También existe plataformas de desarrollo basadas en lenguaje Basic, C#, C++, .NET que requieren la compra de licencias o el uso en versión free por 30 Días.

Por otro lado, existe una plataforma basada en lenguaje de desarrollo gráfico, en el que a partir de un conjunto de herramientas básicas el usuario puede enlazar bloques funcionales que dan lugar a la aplicación. Se trata de App Inventor, una plataforma que inicialmente fue impulsada por Google Labs, actualmente el MIT (Massachusetts Institute of Technology) está a cargo de la Plataforma.

Esta herramienta usa un navegador web como centro de trabajo, almacena todo en servidores, es gratis y se puede acceder a ella desde cualquier lugar con acceso a internet.

El desarrollo en esta plataforma puede dividirse en 3 etapas:

- Creación del entorno gráfico de la aplicación.
- Programación en el editor de bloques.
- Simulación e Instalación de la aplicación.

2.2.5.1 Creación del entorno gráfico de la aplicación

La etapa de creación del entorno gráfico comprende el diseño visual de la aplicación y la disposición y/o localización en pantalla de todas aquellas herramientas con las cuales el usuario puede interactuar por ejemplo: botones, campos de textos, labels, etc.

Adicionalmente en esta etapa también se adicionan aquellos componentes que hacen uso de servicios del sistema operativo como cliente de mensajería, timers, almacenamiento en base de datos, conectividad (web, bluetooth), etc.

La Figura 5 muestra la ventana de creación del entorno gráfico, en el costado izquierdo se encuentra la paleta de módulos disponibles, en el costado derecho se encuentran las propiedades de los módulos que sean adicionados a la interfaz gráfica como color, tamaño de letras, visibilidad, imágenes de fondo, alineación, opción de rotación de pantalla, etc.
2.2.5.2 Programación en el editor de bloques

Al pasar a la ventana de edición el programador dispone de bloques que describen el comportamiento de todos aquellos componentes que fueron usados al crear el entorno gráfico.

La Figura 6 muestra un ejemplo de la vista que puede encontrarse en la ventana de edición de bloques.

Figura 5. Creación del entorno gráfico

Figura 6. Ejemplo vista de ventana de edición de bloques
La Figura 7 muestra un ejemplo de la forma en que se desarrollan los programas usando App Inventor.

2.2.5.3 Simulación e Instalación de la aplicación

Una de las ventajas de usar esta herramienta son las posibilidades que ofrece a la hora de probar las aplicaciones que en ella se desarrollen.

App inventor cuenta con software de simulación en PC, para interactuar directamente con la aplicación creada de la misma forma como se haría con un dispositivo real. Esta forma de simulación es particularmente buena si se cuenta un computador de escritorio o portátil de buenas prestaciones para no observar lentitud en el proceso.

Adicionalmente, en caso de disponer de un dispositivo Android, App inventor y el sistema operativo\(^5\) permiten la emulación directamente en el terminal por medio de conexión USB o WIFI, lo cual permite programar y probar la aplicación en tiempo de ejecución de forma inmediata y fluida.

Por otro lado, desde la plataforma se compila y se crea el archivo instalable (.apk) para su instalación en el dispositivo Android.

2.2.6 Servicio de Almacenamiento de Información

En la actualidad, se ha visto el surgimiento de servicios de almacenamiento en la nube, es posible almacenar toda variedad de archivos que se tengan en un

computador y con estos servicios de almacenamientos se pueden acceder a ellos desde cualquier computador con acceso a internet.

Google Fusion Tables6 se trata de un servicio de Google Drive, es una herramienta que permite organizar, gestionar, colaborar, visualizar y publicar datos en la web de una manera sencilla.(Gispoint, n.d.)

Con Fusion Tables es posible:

- Alojar los datos en la nube. Los usuarios ubicados en cualquier lugar pueden generar gráficos o mapas de la misma.
- Crear visualizaciones personalizadas para sus datos.
- Filtrar y resumir para buscar y calcular los valores específicos de una tabla.
- Envíar una visualización de información a su equipo de trabajos o incrustarla en una página web.
- Definir permisos específicos para que los usuarios sólo accedan a partes diferentes de la tabla.
- Combinar dos o tres tablas para generar una visualización única que incluye dos conjuntos de datos.(Gispoint, n.d.)

Este servicio web también ofrece la posibilidad de visualizar datos con gráficos7 circulares, gráficos de barra, diagramas de dispersión, líneas de tiempo y mapas geográficos basados en Google Maps.

Todos estos servicios pueden ser compartidos, vistos y actualizados en cualquier momento.

La plataforma App Inventor cuenta con un módulo de trabajo para usar Fusion Tables.

La Figura 8 muestra la apariencia de una tabla creada en Fusion Tables.

\6 Más información acerca de Google Fusion Tables disponible en \url{https://support.google.com/fusiontables/answer/2571232}

7 Casos de uso de gráficos disponible en \url{https://sites.google.com/site/fusiontablestalks/stories}
Figura 8. Apariencia de una tabla en Fusion Tables (Google, 2014a).
3 DESARROLLO

La Figura 9 es una representación de la solución planteada, el vehículo porta en su interior un sistema embebido encargado de generar la alerta o aviso de emergencia, proporcionando datos de identificación del conductor y una url o link que será enviado a un dispositivo móvil por medio de un mensaje de texto.

La url es una dirección web que mediante un navegador de internet o aplicación muestra directamente la ubicación donde se ha generado la emergencia.

El dispositivo móvil receptor del mensaje además de visualizar la ubicación del vehículo desde el cual se generó la alerta tiene la posibilidad de guardar los datos en la nube y compartir información en redes sociales con el uso de un aplicativo desarrollado para sistema operativo Android.

![Diagrama de sistema](image)

El sistema embebido ubicado en el vehículo, está centralizado en el uso de un microcontrolador, el cual gestiona la comunicación entre el GSM/GPRS, GPS, y el mecanismo de alerta.
La Figura 10 muestra diagrama de bloques del sistema embebido.

![Diagrama de bloques del sistema embebido](image)

Figura 10. Diagrama de bloques sistema embebido

3.1 Selección de los módulos del proyecto

Los módulos implementados en el proyecto han sido seleccionados teniendo en cuenta la disponibilidad local, sencillez de uso, coste, tamaño.

A continuación se detalla cada uno de los módulos que conforman el sistema embebido.

Entre las alternativas de dispositivos GPS y GSM/GPRS encontrados en el mercado nacional, se encuentran los módulos de la marca Quectel\(^8\) de precios asequibles, disponibilidad de información acerca de todos los requerimientos software y hardware para la puesta en funcionamiento. La ventaja principal estos módulos es que el GPS y el GSM/GPRS actúan como módulos independientes, lo cual contribuye en las pruebas de funcionamiento por etapas y adicionalmente se facilita la depuración de fallos.

Adicionalmente, el proveedor de los módulos ofrece una tarjeta ensamblada con todos los pines del dispositivo, tanto GPS como GSM/GPRS.

\(^8\) Para mayor información acerca del fabricante visitar http://www.quectel.com
3.1.1 Modulo GPS L26

La Figura 11 corresponde al aspecto físico del GPS Quectel L26 en la PCB del distribuidor local.

![Tarjeta L26](image)

Como se puede observar, la tarjeta cuenta con el mínimo hardware necesario para su puesta en funcionamiento debido a que sus pines están disponibles y puede adaptarse fácilmente un conector tipo header.

Entre las principales características que tiene este módulo se tiene:

- Bajo consumo: 21mA Tracking Mode, 29mA Acquisition Mode
- Protocolo NMEA 0183, PMTK
- UART: ajustable 4800~115200bps
- Tasa de actualización 1Hz, hasta 10Hz.
- Salida de mensajes NMEA seleccionables
- DGPS

Este módulo también cuenta con un pin de salida digital, útil usarlo como señal lumínica de actividad de funcionamiento.

La antena usada para el módulo es como se muestra en la Figura 12, tiene la ventaja de ser magnética por lo cual puede adherirse fácilmente a una superficie metálica, la longitud del cable es de 5m.
3.1.2 Módulo GSM/GPRS M95

De los mismos fabricantes del GPS nombrado, se puede encontrar el Módulo M95, el proveedor en el país lo distribuye en una tarjeta con todos los pines accesibles usando conector tipo header, el módulo incluye el zócalo para la tarjeta SIM, como se puede apreciar en la Figura 13.
El fabricante suministra información tanto de hardware\(^9\) como software para configurar el módulo, el módulo es accesible a través de comando AT.

Las principales características de este módulo son:

- QuadBand o cuatro Bandas GSM/GPRS que funciona en las frecuencias de GSM850Mhz, GSM900Mhz, DCS1800Mhz y PCS1900Mhz
- Rango de Voltaje de alimentación de 3.3V ~ 4.6V, Recomendado 4.1V
- Protocolos de servicio de internet: TCP/UDP, FTP y PPP
- Accesible mediante comandos AT
- UART ajustable de 4800bps a 115200bps
- SMS: Modo texto y PDU
- Soporta interfaz de SIM card: 1.8V, 3V

Este módulo también cuenta con dos pines de salida digital correspondiente a encendido y conexión con la red, útiles para usarlos como señal lumínica y verificar su correcta actividad.

La Figura 14 muestra la antena para el módulo M95, la longitud del cable es de 3m

![Antena para el módulo GSM/GPRS M95](image)

Figura 14. Antena para el módulo GSM/GPRS M95 (Sigmaelectronica, 2014).

3.1.3 Fuentes de Alimentación

La lectura de la hoja de datos del módulo GSM/GPRS especifica que el voltaje mínimo de operación del módulo es de 3.3V y como máximo 4.6V, típicamente se opera a un voltaje de 4.1V, y se recomienda que la fuente de voltaje pueda operar

con picos de corriente de 1.6A. Adicionalmente, se recomienda usar un regulador conmutado *(switching regulator)*\(^\text{10}\) cuando el voltaje de alimentación supere 9V. En este caso la fuente de voltaje del sistema embevido será la batería del vehículo.

Dadas estas condiciones, se ha optado por usar el regulador de voltaje conmutado step-down de referencia LM2596\(^\text{11}\) del fabricante *Texas Instruments*, este regulador tiene bajos niveles de voltaje de rizado, soporta 3A, existen versiones fijas de 3.3V 5V 12V y versión ajustable, pocos componentes externos para su funcionamiento, encapsulado through-hole y superficial, es comercial en el mercado nacional o por muestras a través de la web www.ti.com.

En el presente desarrollo se implementa una regulación dedicada de 4.1V para el módulo GSM/GPRS y una regulación de 3.3V para el Microcontrolador y Modulo GPS.

En la Figura 15, se muestra el esquema típico usado para la versión de voltaje de salida fijo, para la fuente de 3.3v se implementa la referencia LM2595-3.3

![Figura 15. Esquema típico voltaje de salida fijo LM2596](http://www.emb.cl/electroindustria/articulo.mvc?xid=702&tip=7)

Donde

- CIN1 — 470 μ F
- COUT1—220 μ F
- D1 — 5A, 40V diodo Schottky
- L2 — 330 μ H

\(^\text{10}\) Ventajas de los reguladores *Switching* http://www.emb.cl/electroindustria/articulo.mvc?xid=702&tip=7

\(^\text{11}\) Hoja de datos disponible en www.ti.com/lit/ds/symlink/lm2596.pdf
En la Figura 16, se muestra el esquema típico para la versión ajustable del regulador.

Figura 16. Esquema típico para salida de voltaje ajustable

Para el voltaje de salida el fabricante provee la siguiente expresión:

\[V_{out} = V_{ref} \left(1 + \frac{R_2}{R_1} \right) \]

Donde \(V_{ref} = 1.23v \)

\(R_1 \cong 1k\Omega \)

\(R_2 = R_1 \left(\frac{V_{out}}{V_{ref}} - 1 \right) \)

Dado que el voltaje \(V_{out} \) que se requiere es 4.1V, entonces:

\(R_2 = 1k\Omega \left(\frac{4.1v}{1.23v} - 1 \right) \)

\(R_2 = 2,33k\Omega \)

Para conseguir el valor de \(R_2 \), se implementa un paralelo entre resistencias de 4,7\(k\Omega \), evidenciadas como R12 y R3 en la Figura 16.
3.1.4 Microcontrolador PIC24FJ64GA002

De acuerdo a los módulos y a su protocolo de comunicación, se debe disponer de dos UART para obtener los datos del L26 y el M95.

Dentro de las premisas a la hora de realizar el diseño se encuentran el desarrollo de un hardware simplificado, reducidas dimensiones, implementación de componentes de montaje superficial, flexibilidad por parte del Microcontrolador para disponer de sus periféricos y realizar un circuito impreso de bajo coste de fabricación, además de operar en el rango de voltaje de 3.3V para que exista compatibilidad con los niveles de voltaje de los periféricos del GPS, GSM y/o que adaptar los niveles de voltaje resulte sencillo.

Por lo anterior, y verificando la disponibilidad en el mercado local, se opta por implementar el Microcontrolador PIC24FJ64GA002, que presenta las siguientes características:

- 2 UART
- 3 fuentes de Interrupción externa
- Bajo consumo
- Oscilador interno
- PPS (Peripheral Pin Select)\(^{12}\)
- Montaje superficial de 28 pines
- Set de instrucciones optimizadas para compiladores en C.
- Voltaje de operación entre 2v a 3.3v

La Figura 17 muestra el pinout del Microcontrolador, los pines marcados con CNxx tienen resistencias pull-up habilitables por software, RPxx indica los pines PPS, los pines de color gris indican compatibilidad con niveles TTL.

\(^{12}\) La característica de PPS, permite asignar periféricos de entrada y salida en cualquiera de los pines nombrados en el pinout como RPxx
Realizando lectura de la hoja de datos del mencionado Microcontrolador, se establece los requerimientos mínimos para puesta en funcionamiento.

3.1.5 Botón de Emergencia

El botón de emergencia que se dispone es de tipo pulsador, y puede ser conectado de forma directa hacia un pin del microcontrolador ya que el microcontrolador posee resistencias de pull-up internas en todos sus pines y son configurables por medio de software.

La Figura 18 corresponde a la conexión del botón de emergencia, el label PB_P1, se conecta directamente a su correspondiente pin en el microcontrolador.

![Figura 18. Botón de emergencia](image-url)
3.2 Desarrollo de Hardware del Sistema Embebido

La Figura 19 muestra las conexiones del microcontrolador, JP3 corresponde a pines UART para conexión a conversor USB-Serial.

La Figura 20 muestra el esquema implementado para el circuito de reset y programación del microcontrolador.
Finalmente, las conexiones mínimas implementadas en el prototipo para los módulos GPS y GSM se muestran en la Figura 21.

Estos módulos cuentan con pines digitales indicadores de actividad (*Netlight* y *Status* para el M95 y Pulse *Per Second* - *PPS* para el L26) con lo cual es posible acondicionar diodos led para visualización.

El acondicionamiento de los leds para visualización se ha realizado como recomienda la hoja de datos de ambos módulos.

El ensamblaje del prototipo se ha hecho con componentes de montaje superficial con el objetivo de lograr reducidas dimensiones. La Figura 22 muestra el prototipo en tarjeta de circuito impreso. La cara superior de la tarjeta aloja todos los componentes de montaje de montaje superficial.
La Figura 23 muestra la cara inferior de la tarjeta, esta aloja los módulos GSM y GPS en sus tarjetas, los módulos pueden ser fácilmente desmontables.
La Figura 24 muestra el prototipo en caja, sus respectivas antenas, conectores a batería y botón de emergencia.

![Prototipo](image)

Figura 24. Prototipo

3.3 Desarrollo Software del Sistema Embebido

La Figura 25 Muestra el diagrama de flujo del programa principal que ejecuta el microcontrolador.

Las configuraciones hardware del microcontrolador comprende la designación de puertos de entrada/salida, configuración de las UART y pines a utilizar.

En la inicialización de los módulos, se establece el modo de operación del GPS, salida mensajes NMEA, se enciende el módulo GSM y se realiza sus configuraciones básicas.
El microcontrolador recibe una señal de alerta a través de la pulsación de un botón el cual activa la ejecución del siguiente proceso:

- GPS en modo Standby o modo bajo consumo, el GPS no envía tramas NMEA a través de su puerto de comunicación UART.
- Procesamiento de la trama GLL para obtener latitud y longitud.
- Evaluar cuál es el Centro de Atención Inmediato (CAI) más cercano al origen de la alerta.
- Obtener el número de teléfono móvil del CAI hallado.
- Construir el Mensaje de texto el cual tiene la estructura que se mostrará posteriormente.
- Enviar mensaje de texto.
Se ha dispuesto de un led indicador de actividad del microcontrolador que enciende a razón de 100 milisegundos (100mS on / 100mS off)

La Figura 26 muestra las subrutinas que ejecuta el microcontrolador, corresponden al envío del mensaje de texto y la atención de la comunicación entre el microcontrolador y los módulos GPS y GSM.

Figura 26. Diagramas de flujo subrutinas del microcontrolador
3.3.1 Configuración y Procesamiento de datos del GPS

La hoja de datos que provee el fabricante del GPS, muestra las configuraciones por defecto del módulo.

<table>
<thead>
<tr>
<th>Item</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMEA port baud rate</td>
<td>9600bps</td>
</tr>
<tr>
<td>Rate of position fixing</td>
<td>1Hz</td>
</tr>
<tr>
<td>DGPS mode</td>
<td>SBAS</td>
</tr>
<tr>
<td>SBAS enable</td>
<td>Enable</td>
</tr>
<tr>
<td>NMEA output messages</td>
<td>GGA, RMC, GSA, GSV, VTG, GLL, TXT</td>
</tr>
</tbody>
</table>

Como se observa en la Tabla 8, por defecto, los mensajes o tramas NMEA, que se encuentran configuradas son GGA, RMC, GSA, GSV, VTG, GLL, TXT, estos mensajes se actualizan y se envían cada 1Hz (1 segundo) hacia el microcontrolador por medio de la UART dispuesta en el GPS a 9600bps.

De estas tramas, se ha elegido la trama de datos GLL ya que esta contiene la posición geográfica de interés, en concreto, en esta trama se encuentra la posición geográfica del vehículo que porte el dispositivo.

En el documento *L26 GNSS Protocol Specification* (Quectel, 2013) se especifica que el GPS implementa el protocolo NMEA 0183 y además se explica el contenido de las tramas que envía el GPS, adicionalmente se muestran los mensajes que deben enviársele para su configuración a través del uso del protocolo PMTK\(^{13}\).

La Tabla 9, muestra los mensajes que deben ser enviados al GPS para configurar la salida de mensajes NMEA seleccionables, modo bajo consumo Standby y AlwaysLocate, reset de GPS y configuración de baudrate.

\(^{13}\) Protocolo MTK, se trata del protocolo empleado para controlar y configurar el GPS, el fabricante implementa el protocolo llamado PMTK, sus detalles puede verte en el capítulo 3 del documento *L26 GNSS Protocol Specification*.
Tabla 9. Mensajes de configuración GPS

<table>
<thead>
<tr>
<th>Función del Mensaje</th>
<th>Mensaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selección Mensajes NMEA GLL</td>
<td>$PMTK314,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0*29</td>
</tr>
<tr>
<td>GPS en modo Standby</td>
<td>$PMTK161,0*28</td>
</tr>
<tr>
<td>GPS modo Full on(^{14})</td>
<td>$PMTK225,8*23</td>
</tr>
<tr>
<td>GPS AlwaysLocate(^{15})</td>
<td>$PMTK225,8*23</td>
</tr>
<tr>
<td>Resetear GPS</td>
<td>$PMTK104*37</td>
</tr>
<tr>
<td>Configurar Baudrate GPS</td>
<td>$PMTK251,9600*17</td>
</tr>
</tbody>
</table>

Una vez se ha configurado el GPS para obtener únicamente la trama GLL, el microcontrolador recibirá una trama de datos como se muestra en la Figura 27.

![Figura 27. Ejemplo de trama GLL](image)

El procesamiento de la trama GLL, responde a una máquina de estados que se ha codificado en el algoritmo del microcontrolador, como se muestra en la Figura 28.

\(^{14}\) En modo Full on el GPS se encuentra encendido todo el tiempo.

\(^{15}\) AlwaysLocate es un modo de bajo consumo que hace alternar al GPS entre modo Standby y modo Full on.
El microcontrolador procesa la trama GLL byte a byte, cada carácter del mensaje representa 1 Byte, en la máquina de estado el carácter se representa como el literal C.

La máquina de estado inicia en $E0$, el cual verifica el inicio de trama comprobando el carácter $. Al confirmar inicio de trama se aumenta de estado.

El próximo carácter ASCII, es evaluado por el estado actual de la máquina, en caso de comprobar el carácter esperado aumenta el estado de la máquina, de lo contrario vuelve a la condición inicial.

Al llegar al estado $E6$, se ha comprobado el tipo de trama (GPGLL), este estado se mantiene almacenando el carácter ASCII hasta completar la trama o detectar fin de trama.

Una vez se ha almacenado la trama, se deben extraer el par de coordenadas (Latitud y Longitud) las cuales están en formato $'ddmm.mmmm'$ (grados y minutos)
y transformarlas a algunos de los formatos aceptados por Google Maps16 el cual es el servidor de mapas más popular.

3.3.2 Configuración del GMS/GPRS Quectel M95

El M95 es un dispositivo configurable a través de comandos AT, la Tabla 10 muestra los comandos AT usados para configurarlo.

<table>
<thead>
<tr>
<th>Comando AT</th>
<th>Función/Respuesta</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Comando de prueba para verificar comunicación con el dispositivo. Responde: \textit{AT}</td>
</tr>
<tr>
<td>AT+CFUN=1</td>
<td>Activa todas las funcionalidades del módulo M95. Responde: \textit{OK}</td>
</tr>
<tr>
<td>AT+CMGF=1</td>
<td>Seleccionar formato de mensajes de texto en Modo Texto. Responde: \textit{OK}</td>
</tr>
<tr>
<td>AT+IPR=9600</td>
<td>Configurar baudrate de la UART a 9600bps. Responde: \textit{OK}</td>
</tr>
<tr>
<td>AT+CMGS="NUM"</td>
<td>Enviar mensaje de texto al número especificado en NUM. El uso de comillas dobles es indispensable. Responde: > Posterior a la respuesta se debe enviar el mensaje de texto deseado seguido de \textbf{ctrl}-z</td>
</tr>
</tbody>
</table>

3.3.3 Estructura del Mensaje de Texto

Con la operación del sistema embebido ubicado en el vehículo, el mensaje de texto que se envía tiene la estructura que se muestra en la Tabla 11.

<table>
<thead>
<tr>
<th>Formato del mensaje</th>
<th>Ejemplo de Mensaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>*Nombre del Conductor# ID: Placas del vehículo URL</td>
<td>*Jhon Jairo Zambrano# ID:ABC123 http://maps.google.es/?q=3.425757%20-76.497120</td>
</tr>
</tbody>
</table>

16 Formatos de coordenadas que google maps puede reconocer, disponible en https://support.google.com/maps/answer/18539?hl=es
En el nombre del conductor se ha dispuesto de caracteres especiales tales como “*” y “#” para inicio y fin de nombre respectivamente, lo cual permite el almacenamiento del nombre completo del conductor sin ninguna limitación o abreviación de nombre por parte del aplicativo móvil.

3.4 Aplicativo para Sistema Operativo Android

La aplicación para móviles con sistema operativo Android está desarrollada en la Plataforma App Inventor 2, tiene la posibilidad de almacenar los datos del mensaje de texto (Nombre conductor, placas, coordenadas) usando el servicio de Google Fusion Tables con lo cual se tiene los datos disponibles en internet para otros dispositivos con los cuales es posible compartir la información almacenada.

La Figura 29 muestra el esquema general del aplicativo móvil desarrollado.

![Esquema general aplicativo móvil](image)

Figura 29. Esquema general aplicativo móvil
El funcionamiento de la aplicación se basa en eventos asociados al tacto de 6 botones que dispone la aplicación. La Figura 30 muestra los eventos.

Figura 30. Eventos de la aplicación para Dispositivos Android

3.4.1 Interfaz Gráfica de aplicativo

Con el objetivo de ofrecer una interfaz sencilla y cumplir con los eventos nombrados, la aplicación presenta en una sola vista de pantalla los botones disponibles para su operación.

La visualización de la tabla de registros se presenta en una vista de pantalla adicional.

La Figura 31 muestra una captura de pantalla de la interfaz gráfica de la aplicación desarrollada. Mientras no se haya realizado ningún registro se encontraran deshabilitados los botones de visualización en mapas y compartir con redes sociales.
3.4.2 Código de bloques

Posterior al diseño de la interfaz gráfica se procede a programar usando el editor de bloques.

La Figura 32 muestra el código en bloques implementado que responde al tacto del botón guardar, este verifica la existencia del mensaje de texto y procede a implementar rutinas adicionales para la extracción y el almacenamiento de la información.

La aplicación muestra un mensaje en pantalla en caso de que se pulse accidentalmente el botón guardar mientras el campo de texto se encuentre vacío.
Posterior a la extracción de datos del mensaje y almacenamiento, se dispone de variables globales denominadas así:

- **Nombre**: Variable de texto que almacena el nombre del remitente.
- **Placas**: Variable de texto que almacena las placas del vehículo origen del mensaje en el formato mencionado.
- **Latitud**: Variable numérica que almacena la latitud.
- **Longitud**: Variable numérica que almacena la longitud.

De esta forma el tacto de los botones *Ver en Street View* y *Ver en Google Maps* ejecutan el código mostrado en la Figura 33.

Dado que los datos se encuentran disponible en variables es posible construir con ellos los parámetros necesarios para visualización de la información en aplicación Google Maps.
Figura 33. Código implementado para visualización de Coordenadas

El botón *Ver Tabla*, Implementa un visor de página web dentro de la aplicación, únicamente pueden observarse los datos que han sido almacenados.

Adicionalmente, los datos que son almacenados con el uso de la aplicación móvil pueden ser vistos en un PC\(^\text{17}\) con la posibilidad de modificación y la visualización en mapa de todas alertas registradas.

La Figura 34 muestra la interfaz en PC de la tabla. La pestaña *Row muestra* los registros organizados por columnas (Date, Nombre, Placas, Latitud, Longitud).

La pestaña *Map of Location* muestra en un mapa todos los registros guardados.

\(^\text{17}\) Para observación de la Tabla se debe disponer de la URL y datos de acceso de la cuenta GMAIL con la que fue creada la tabla.
Figura 34. Interfaz gráfica en PC

Esta interfaz es posible visualizarla usando un navegador web y accediendo a la cuenta de correo GMAIL desde la cual se creó la tabla. Es posible realizar filtros en cada una de las columnas o encontrar un valor específico.
4 PRUEBAS, RESULTADOS Y VALIDACIÓN

Las pruebas realizadas al prototipo evalúan la conectividad del sistema embebido con un PC, correcta localización por parte del GPS, elección de coordenada destino del mensaje de texto, almacenamiento de información en la base de datos usada y visualización de coordenadas en Google Maps.

4.1 Interfaz con PC – Monitoreo de actividad del dispositivo

Para facilitar el proceso de pruebas, en el diseño electrónico del dispositivo se ha dispuesto de 3 puertos UART, dos dedicadas a los dispositivos GPS y GSM, y una dedicada a la comunicación con PC para realizar monitoreo de la actividad del algoritmo implementado.

La Figura 35 muestra un diagrama de bloques que ilustra la disposición de los puertos UART, para la comunicación con PC se ha implementado un conversor USB-Serial.

Figura 35. Diagrama de bloques de disposición de puertos UART
Para ver los datos que son enviados desde el dispositivo hacia el PC puede usarse cualquier software monitor de puerto serial como putty, Hyperterminal, Hercules, Terminal by Bray, etc, particularmente se ha usado un software que provee Quectel llamado QNavigator18, este software funciona como un monitor de puerto serie al cual se le han adicionado funcionalidades para comunicar fácilmente dispositivos GSM/GPRS a través de comandos AT, por tanto facilita pruebas con el dispositivo M95, y además se puede usar como monitor serie de propósito general.

La Figura 36 muestra la prueba realizada al sistema usando el monitor de puerto serie.

18 Para mayor información y/o descarga visitar \url{http://www.quectel.com/product/prodetail.aspx?id=7}
4.2 Registro de datos

Para el registro de datos, se ha probado el dispositivo en un carro particular y una ruta trazada, GPS en modo Full on, durante el trayecto se ha pulsado el botón de alerta intencional y aleatoriamente.

Por cuestiones de practicidad en la prueba, todos los mensajes de texto han sido enviados al mismo número móvil usando sim card del operador Movistar.

La Figura 37 muestra los datos registrados\(^{19}\) y la visualización en Google Fusion Tables en PC a través de navegador.

19 Se registraron 26 alertas durante el trayecto, por efectos de la captura de pantalla de la imagen no se permite visualizar el total de los registros.
Se observó que los registros almacenados no guardaban orden con respecto a la hora, sin embargo se soluciona aplicando filtro en la columna “Date”.

De igual forma, la información de la tabla de registros puede ser vista en el dispositivo móvil como se muestra en la Figura 38.

<table>
<thead>
<tr>
<th>Date</th>
<th>Nombre</th>
<th>Placas</th>
<th>Latitude</th>
<th>Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>oct 7, 2014 8:04:19 p.m.</td>
<td>Jhon Jairo Zambrano</td>
<td>ABC123</td>
<td>3.425822</td>
<td>-76.497016</td>
</tr>
<tr>
<td>oct 7, 2014 8:05:22 p.m.</td>
<td>Jhon Jairo Zambrano</td>
<td>ABC123</td>
<td>3.426263</td>
<td>-76.497268</td>
</tr>
<tr>
<td>oct 7, 2014 8:05:47 p.m.</td>
<td>Jhon Jairo Zambrano</td>
<td>ABC123</td>
<td>3.426913</td>
<td>-76.499038</td>
</tr>
<tr>
<td>oct 7, 2014 8:09:37 p.m.</td>
<td>Jhon Jairo Zambrano</td>
<td>ABC123</td>
<td>3.433066</td>
<td>-76.501434</td>
</tr>
<tr>
<td>oct 7, 2014 8:21:28 p.m.</td>
<td>Jhon Jairo Zambrano</td>
<td>ABC123</td>
<td>3.428719</td>
<td>-76.498336</td>
</tr>
<tr>
<td>oct 7, 2014 8:06:38 p.m.</td>
<td>Jhon Jairo Zambrano</td>
<td>ABC123</td>
<td>3.428305</td>
<td>-76.498573</td>
</tr>
<tr>
<td>oct 7, 2014 8:08:03 p.m.</td>
<td>Jhon Jairo Zambrano</td>
<td>ABC123</td>
<td>3.431149</td>
<td>-76.497589</td>
</tr>
</tbody>
</table>

Figura 38. Vista de los registros en Dispositivo móvil

También dentro de la visualización que ofrece la interfaz en PC, se encuentra la posibilidad de ubicar todos los registros en un mapa, usar diferentes colores para los iconos de posición, y la selección de la información que será mostrada al efectuar click sobre alguna posición.
La Figura 39 muestra los registros ubicados en el mapa.

![Mapa con marcadores de ubicación](image)

Figura 39. Visualización en mapa de las alertas usando Fusion Tables para PC

4.3 Posicionamiento del GPS

Según la ruta recorrida que se mostró en la Figura 39, no se observaron posiciones fuera de la ruta planeada. Sin embargo, la especificación del módulo L26 se encuentra en término CEP (Circular Error Probable) con un valor de 2.5m.

Respecto al tiempo que toma al GPS obtener el primer posicionamiento (TTFF\(^{20}\)) en arranque frío del dispositivo, se registró un tiempo promedio de 23.5 Segundos. Las especificaciones técnicas del dispositivo registran un tiempo menor a 35 segundos. Este parámetro puede variar de acuerdo a las condiciones de ubicación del dispositivo.

\(^{20}\)TTFF: Time To First Fix
4.4 Mediciones de Consumo

En las pruebas de medición realizadas al prototipo se ha usado como fuente de voltaje una batería de 12V – 1300mA/h, con el objetivo de conocer cuál es la autonomía del prototipo usando una batería de respaldo.

Se observó que en el prototipo el mayor consumo de corriente lo demanda el módulo L26, por esta razón se categoriza el consumo en función del modo de operación del GPS.

La Tabla 12 muestra las mediciones de corriente del dispositivo

<table>
<thead>
<tr>
<th>Modo de Operación del GPS</th>
<th>Consumo de Corriente (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full on</td>
<td>60</td>
</tr>
<tr>
<td>AlwaysLocate</td>
<td>40</td>
</tr>
</tbody>
</table>

Con las mediciones realizadas es posible calcular el tiempo de funcionamiento del dispositivo usando la batería mencionada.

La Tabla 13 muestra la autonomía del dispositivo

<table>
<thead>
<tr>
<th>Modo de Operación del GPS</th>
<th>Tiempo de Funcionamiento (Hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full on</td>
<td>21.6</td>
</tr>
<tr>
<td>AlwaysLocate</td>
<td>32.5</td>
</tr>
</tbody>
</table>
5 CONCLUSIONES

- Se logró cumplir con el objetivo principal, el cual se fundamentó en el desarrollo de un prototipo que facilita la comunicación entre taxis – policías para la seguridad ciudadana.

- La investigación del estado del arte permitió establecer que el dispositivo a desarrollar debería generar la alerta de forma sencilla, rápida, con la ventaja de No poner en sobre aviso a un eventual victimario dentro del vehículo.

- Se logró implementar visualización de tipo lumínica en el dispositivo que porta el vehículo, lo que facilita conocer el estado de operación del sistema.

- Los dispositivos GSM y GPS que fueron seleccionados para el desarrollo del prototipo cumplen con los requerimientos de funcionalidad, bajo coste y adicionalmente su distribuidor es nacional.

- Se logró el desarrollo del sistema embebido que cumple con los requerimientos de funcionamiento.

- Se desarrolló una interfaz gráfica para visualización de la información, implementando un aplicativo móvil desarrollado en App Inventor para sistema operativo Android.

- El prototipo fue evaluado en vehículo y cumplió con la funcionalidad para la cual fue diseñado.

- El usuario debe asegurar la existencia de saldo en la tarjeta sim usada en el prototipo.

- El dispositivo móvil receptor del mensaje debe contar con wifi o conexión de datos para realizar el almacenamiento de la información y visualización de coordenadas ya que la aplicación de Google Maps no es funcional de forma offline.

- Dado que la caja usada para el prototipo no es de diseño ajustado al mismo, debe ubicarse en lugares donde la temperatura del motor y/o sustancias puedan afectar el dispositivo.
6 BIBLIOGRAFÍA

Sanchez Reinoso, M. A. (2012). Diseño y Construccion de un prototipo de control eléctronico con GPS para bloquear y conocer la ubicacion de los vehiculos de la cooperativa de transporte “Taxis General Necochea” a través del servicio sms que ofrecen las operadoras de SMA. Recuperado de http://dspace.ups.edu.ec/handle/123456789/1845

